

LA-UR-20-22011

Approved for public release; distribution is unlimited.

Title: APS/IARPA EuXFEL/DESY Visit

Author(s): Smedley, John Morgan

Weisse-Bernstein, Nina R.

Honig, Steven Paul

Intended for: APS/IARPA EuXFEL/DESY Visit

Issued: 2020-03-02

APS/IARPA EuXFEL/DESY Visit

& other detector needs

Nina Weisse-Bernstein, Steven Honig, John Smedley

March 5, 2020

Thanks to Zhehui Wang, Jen Bohon and Rich Sheffield

Managed by Triad National Security, LLC for the U.S. Department of Energy's NNSA

CDI imaging experiments at LCLS

- Parasitic Mode CDI at CXI
 - Evaluation & demonstration of inline parasitic mode oper
 - Demonstration of rapid beam characterization
 - Leveraged experiment to evaluate imaging quality
- Experimental Setup
 - Unused 100nm focused beam (a)
 - Primary experiment was protein crystallography
 - Secondary experiment received downstream "used" beam
 - Slits to limit fill on lens. Beam attenuation (b)
 - Overfilled Be CRL (c)
 - Coated TEM Sample on linear translation stage (d)
 - CSPAD 140k Detector (e)
 - 500 nm Step size, 5 um focused spot on sample

Parasitic Beam gives high quality ptychographic reconstruction

- Ptychographic reconstructions based upon ePIE and ePIE derived variants
 - Multi-mode and position refinement additions enabled high quality reconstructions
- Object and probe retrieved with good Object agreement to SEM
 - Thickness variation real (TEM grid strained during deposition)
- Demonstrated ~155 nm resolution
- Beam quality diagnostic in addition to imaging technique

B. Pound et al, Journ. App. Cryst. In prep.

Beam jitter impacts reconstruction ease and quality

- Beam position and profile varied significantly shot to shot
- Experiment was run in a mode where one frame was captured per position & beam shot
- Ptychography requires knowledge of where the beam is hitting the sample for every frame
 - Some position jitter can be compensated for algorithmically but increases computational intensity & there is a limit as to how much can be compensated for
- In-situ beam monitoring would be greatly advantageous

Lessons From Imaging at CXI

- Successes
 - Imaging in parasitic mode possible
 - High coherence beam maintained through full parasitic geometry
 - Ptychographic results provide rapid beam diagnostics
 - Possible additional operational model for beamline
 - Opportunity to increase number of users via simultaneous experiments
- Limitations
 - Experimental non-idealities increase processing complexity
 - Random beam dropout from primary experiment
 - Stability of beam position
 - Judicious hardware selection required for experimental precision
 - Impact of harmonics, choice of undulators, etc.
 - Dynamic range of detector highly limiting resolution

B. Pound et al, Journ. App. Cryst. In prep.

Diamond Detectors Show Promise for Pulse-by-pulse Measurement of XFEL Beams

- Assisted commissioning of Bernina beamline, SwissFEL
- Prototype diamond-based detectors exhibited pulse-by-pulse linearity up to ~3% of the full beam
- Sub-ns response times

Bohon et al, in preparation

- Pulse broadening with increased charge density
- Redesign for faster charge collection: plan for testing at LCLS in 2020

Single Crystal Diamond ~20 µm thick Contacts: 500 nm UNCD + 15 nm Al ~3 mm diameter active area

Juranic et al. (2019) JSR 26, 2081

MaRIE requires penetrating multiple probes at varying space/time scales to make movies of unique events

A.J. Clarke (PI), S.D. Imhoff, P.J. Gibbs, pRad Team (LANL)
A. Karma, D. Tourret (Northeastern Univ.),

The August 2016 workshop surveyed current status And identified future opportunities

High-energy and Ultrafast X-Ray Imaging Technologies and Applications

A MaRIE workshop shining a light on the future of ultrafast high-energy photon technology

ACCOMMODATIONS

ABSTRACTS

REGISTRATION

PROGRAM

TRAVEL

High-energy and Ultrafast X-Ray Imaging Technologies and Applications

Date: August 2-3, 2016

Hotel venue: Hilton Santa Fe at Buffalo Thunder

The goal of this workshop is to gather leading experts in the fields related to ultrafast high-energy photon imaging and prioritize the path forward for ultrafast hard x-ray imaging technology development, identify important applications in the next 5-10 years, and establish foundations for near-term R&D collaboration.

This workshop is one in a series being organized by Los Alamos National Laboratory to engage broader scientific community in the MaRIE (Matter-Radiation Interactions in Extremes) development process. MaRIE is the proposed

Local Organizers

- Michael Stevens
- Zhehui (Jeff) Wang (505) 665-5353

Meeting Planner

Peggy Vigil
 (505) 667–8448

 For logistical purposes and questions

External Co-Organizers

- Peter Denes (LBL)
- Sol Gruner (Cornell Univ.)

Two-pronged development process: (Low & High Risk)

Performance	Type I imager	Type II imager	
X-ray energy	30 keV	42-126 keV	
Frame-rate/inter-frame time	0.5 GHz/2 ns	3 GHz / 300 ps	
Number of frames	10	10 - 30	
X-ray detection efficiency	above 50%	above 80%	
Pixel size/pitch	≤ 300 mm	< 300 mm	
Dynamic range	103 X-ray photons	≥ 10 ⁴ X-ray photons	
Pixel format	64 x 64 (scalable to 1 Mpix)	1 Mpix	

MaRIE KPP requirements

ASIC/Data	No. Chan.	Analog bandwidth (GHz)	digital samplin g (GHz)	S/N (dB)	Bit Res.	CMOS technol.
PSEC4	6	1.5	15		10.5	IBM 130 nm
"Hawaii chip"	128?	3	20	58 dB/ 1Vpp	9.4	(TSMC 130 nm)
"Cornell Keck GHz"	384 x 256	0.5				
еріх∆	1M	3			>= 8	TSMC 250 nm

Backup

Parasitic Beam gives high quality ptychographic reconstruction

- High Coherence beam in parasitic geometry
- Object and probe retrieved with good agreement to SEM
- Opportunity to increase number of simultaneous users

B. Pound et al, Journ. App. Cryst. In prep.